A Note on the Nonlocal Boundary Value Problem for Hyperbolic-parabolic Differential Equations

نویسندگان

  • ALLABEREN ASHYRALYEV
  • YILDIRIM OZDEMIR
چکیده

The nonlocal boundary value problem        d 2 u(t) dt 2 + Au(t) = f (t)(0 ≤ t ≤ 1), du(t) dt + Au(t) = g(t)(−1 ≤ t ≤ 0), u(−1) = αu (µ) + βu (λ) + ϕ, |α|, |β| ≤ 1, 0 < µ, λ ≤ 1 for differential equation in a Hilbert space H with the self-adjoint positive definite operator A is considered. The stability estimates for the solution of this problem are established. In applications, the stability estimates for the solutions of the mixed type boundary value problems for hyperbolic-parabolic equations are obtained. 1. Introduction. It is known that some problems in fluid mechanics (model of the motion of an ideal fluid filling, exhibiting both viscous and non-viscous phases) and other areas of physics and mathematical biology(taxis-diffusion-reaction model) lead to partial differential equations of the hyperbolic-parabolic type. Methods of solutions of the nonlocal boundary value problems for hyperbolic-parabolic differential equations have been studied extensively by many researches (see, e. and the references given therein). In the present paper we consider the nonlocal boundary value problem

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Difference Schemes for Hyperbolic-Parabolic Equations

The nonlocal boundary value problem for a hyperbolic-parabolic equation in a Hilbert space H is considered. The difference schemes approximately solving this boundary value problem are presented. The stability estimates for the solution of these difference schemes are established. In applications, the stability estimates for the solutions of the difference schemes of the mixed type boundary val...

متن کامل

Numerical studies of non-local hyperbolic partial differential equations using collocation methods

The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...

متن کامل

Existence and uniqueness of positive and nondecreasing solution for nonlocal fractional boundary value problem

In this article, we verify existence and uniqueness of positive and nondecreasing solution for nonlinear boundary value problem of fractional differential equation in the form $D_{0^{+}}^{alpha}x(t)+f(t,x(t))=0, 0

متن کامل

Nonlocal Boundary Value Problems for Elliptic-Parabolic Differential and Difference Equations

The abstract nonlocal boundary value problem −d2u t /dt2 Au t g t , 0 < t < 1, du t /dt − Au t f t , 1 < t < 0, u 1 u −1 μ for differential equations in a Hilbert space H with the self-adjoint positive definite operator A is considered. The well-posedness of this problem in Hölder spaces with a weight is established. The coercivity inequalities for the solution of boundary value problems for el...

متن کامل

On Bitsadze-Samarskii type nonlocal boundary value problems for elliptic differential and difference equations: Well-posedness

Keywords: Elliptic equations Nonlocal boundary value problems Difference schemes Stability a b s t r a c t The well-posedness of the Bitsadze–Samarskii type nonlocal boundary value problem in Hölder spaces with a weight is established. The coercivity inequalities for the solution of the nonlocal boundary value problem for elliptic equations are obtained. The stable second order of accuracy diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005